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Fig. 5: The impact of energy profile on the performances of algorithms in BE-WSNs with constant-rate energy harvesting

process.
180 T T T r r
1a0] [ LARF Pl i YT P
|-—ORR @ 120]- |+~ orr &
1201 ——MAX_FIRST, ol |-— MAX_FIRST| &
[=:—RANDOM o 100 < RANDOM =
100 & . A~
e an ¢ . F
80 i)
60 ,P( el
w0 L - & 40 T
P
R i pw 20 = 88
sl &8 o o 8§ 580
T : . : T o T : : . :
0 M 20 33 40 s 60 O 10 20 30 40 50 60
n n

(a) The impact of n on AP, (b) The impact of n on A.
Fig. 4: The impact of n on the performances of algorithms in
BF-WSNs with constant-rate energy harvesting process.

similar to that in BE-WSNs with Poisson energy harvest-
ing process. First, the weighted sum of average peak ages
AP increases with the growth of n. Second, the proposed
online ORR algorithm has similar performance with the
proposed optimal offline algorithm no matter what the
network size is, which verifies that the proposed online ORR
algorithm has a low competitive ratio. Third, the proposed
ORR algorithm and LARF algorithm can produce lower
AP than the RANDOM algorithm and the MAX FIRST
algorithm. Although the MAX_FIRST algorithm has similar
performance with the proposed algorithms, it is not feasible
in fact since the assumption that all battery-free sensor
nodes have the knowledge of real-time maximum Aol of the
network fails in BEEWSNSs. Finally, the AP produced by the
LAREF algorithm and the ORR algorithm increases sharply
after n > eg/u = 20. The reasons are as follows. When
n < eg/p, it indicates that the expectation E(r;) = p < e, /n.
Therefore, the energy constraint is the major constraint for
reducing A¥ and there is little transmission interference
among battery-free sensor nodes. When n > e, /p, however,
since the probability of a battery-free sensor node to harvest
at least e¢ energy in n time slots increases with the increase
of n, the energy constraint is no longer the major constraint
for reducing AP. Instead, the transmission interference con-
straint becomes the major constraint for reducing A¥ since
the increase of n incurs the increased competitions among
battery-free sensor nodes for the common wireless channel.
Therefore, AP increases sharply after n > e, /p = 20.

Fig.4 (b) presents the average age A achieved by the
LARF algorithm, the ORR algorithm, the MAX_FIRST al-
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gorithm and the RANDOM algorithm, respectively. The
figure reveals that the proposed LARF algorithm and ORR
algorithm can also reduce the average age of data collection
in BF-WSNs, which verifies the good performance of the
proposed algorithms in increasing data freshness for data
collection in BF-WSNs.

6.2.2 The Impact of Energy Profile

Next, we evaluate the impact of energy profiles of battery-
free sensor nodes on the weighted sum of average peak ages
and average age of data collection in BF-WSNs. We set the
network size as n = 20. Since the energy harvesting rates
of battery-free sensor nodes follow the Normal distribution
with mean p and standard deviation o, we evaluate the
impact of ¢ and o, respectively. Fig.5 shows the numerical
results, where each data point in the figures is the average
result produced by running algorithms on 100 BE-WSNs.

We first evaluate the weighted sum of average peak ages
and average age of data collection in BE-WSNs as mean p
increases from 0.03 x e to 0.09 x e,, where e is the energy
consumption for a battery-free sensor node to generate and
transmit one sensory data packet. We set standard deviation
as 0 = 0.01 x e,. The experiment results are presented in
Fig.5 (a) and (b). Fig.5 (a) shows that the weighted sum of
average peak ages A produced by all algorithms decreases
with the increase of . It can also be observed from the figure
that the proposed LARF algorithm and ORR algorithm has
better performance than the other two algorithms. Besides,
the performance of the proposed online ORR algorithm is
close to the performance of the optimal offline LARF algo-
rithm. Specifically, the weighted sum of average peak ages
AP produced by the proposed algorithms decreases sharply
after u < eg/n = 0.05 x e;. As mentioned before, energy
is the major constraint for reducing A when p < eg/n.
Therefore, the increase of the expectation E(r;) = p will
reduce AF sharply when p < eg/n. Fig.5 (b) presents the
average age ‘A achieved by the LARF algorithm, the ORR
algorithm, the MAX_FIRST algorithm and the RANDOM
algorithm, respectively. It reveals the fact that the proposed
LARF algorithm and ORR algorithm can also reduce the
average age of data collection in BE-WSNs.

We also evaluate the weighted sum of average peak ages
and average age of data collection in BE-WSNs as standard
deviation ¢ increases from 0.005 x e, to 0.025 x e, where
e, is the energy consumption for a battery-free sensor node
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to generate and transmit one sensory data packet. We set
mean as ¢t = 0.05 X e,. The experiment results are presented
in Fig.5 (c) and (d). Intuitively, both the weighted sum of
average peak ages A” and the average age A increase with
the increase of o. The standard deviation o represents the
differences among the energy harvesting rates of battery-
free sensor nodes in a BE-WSN. Therefore, the figures reveal
that the larger differences among energy harvesting rates
of battery-free sensor nodes in a BF-WSN will reduce the
data freshness of data collection in the network. Similar to
the above experiment results, the proposed LARF algorithm
and ORR algorithm can always increase the data freshness
of data collection in BF-WSNs.

7 CONCLUSION

In this paper, we investigate the Aol minimization data
collection scheduling problem in one-hop BF-WSNs with
multiple battery-free sensor nodes having non-specific en-
ergy harvesting processes. We propose the optimal offline
LAEF algorithm and the online ORR algorithm, where the
optimality of the offline algorithm and the competitive ratio
of the online algorithm are theoretically proved and ana-
lyzed. Finally, numerical results are provided to verify the
performances of the proposed algorithms. The numerical
results reveal that the proposed LARF algorithm and ORR
algorithm can significantly improve the data freshness of
data collection in BF-WSNSs.
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